Skip to content
On this page

⚡ 序言

我们都知道树是一个数据结构,但可能很少听到堆这个数据结构。其实,堆就是一种特殊的完全二叉树。而对于前端来说,我们通常了解最大堆和最小堆,也经常用最大堆和最小堆来解决各种问题。比如,数组中的第 K 个最大元素、文档中前 K 个高频元素等等。

在下面的这篇文章中,将讲解堆的基础知识,并手动地用 js 来构建一个最小堆,同时剖析几道经典的 leetcode 算法题。

接下来开始进入本文的讲解~🔥

🦘 一、堆是什么?

  • 堆是一种特殊的 完全二叉树 ,完全二叉树意味着每个节点都有两个孩子节点
  • 最大堆:所有的节点都 大于等于 ≥ 它的子节点;
  • 最小堆:所有的节点都 小于等于 ≤ 它的子节点。

🐥 二、JS 中的堆

  • JS 通常用数组来表示堆。
  • 左侧节点的位置是 2*index+1
  • 右侧节点的位置是 2*index+2
  • 父节点位置是 (index - 1) / 2

🐝 三、堆的应用

  • 堆能够高效、快速地找出最大值最小值,时间复杂度 O(1)
  • 在开发中,有时候我们可能会想要找到一个数组中的最大或者最小元素,而堆,就可以找出第 K 个最大(小)元素

🐈 四、构建一个最小堆

1. 定义

从上面的小知识中我们可以了解到,对于最小堆来说,它的所有节点都小于等于它的子节点。接下来我们来看堆这个数据结构的一些常见实现方法。

2. 方法

方法含义
swap()交换两个节点的位置
getParentIndex()获取父节点的位置
getLeftIndex()获取左侧子节点的位置
getRightIndex()获取右侧子节点的位置
shiftUp()进行上移操作
shiftDown()进行下移操作
insert()插入节点的值
pop()删除堆顶操作
peek()获取堆顶的值
size()获取堆的大小

3. 用 js 代码实现最小堆

(1)初始化一个堆

首先我们需要先来定义一个空数组,这个数组用来存放一个堆。具体代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
}

(2)交换位置 swap()

初始化完一个堆之后,如果想要实现上下移操作,我们时不时的还需要对两个节点进行位置交换。那么我们再来写一个交换节点位置的方法。具体代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }
}

(3)获取父节点的位置 getParentIndex()

上面我们讲到,父节点的位置是在 (index - 1) / 2 。 因此,我们需要传入当前节点的值索引 index ,来进行一个地板除操作,获取具体的父节点位置。具体代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取父节点的位置
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    //也可以用以下这种右移操作的方法
    //return (i - 1) >> 1;
  }
}

(4)获取左侧子节点的位置 getLeftIndex()

对于左侧子节点来说,其索引为 2 * index + 1 ,也就是说,它是 当前节点的索引值的2倍 + 1具体实现代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取父节点的位置
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    //也可以用以下这种右移操作的方法
    //return (i - 1) >> 1;
  }

  //获取左侧子节点,i为当前节点的索引
  getLeftIndex(i) {
    return i * 2 + 1;
  }
}

(5)获取右侧子节点的位置 getRightIndex()

对于右侧子节点来说,其索引为 2 * index + 2 ,也就是说,它是 当前节点的索引值的2倍 + 2具体实现代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取父节点的位置
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    //也可以用以下这种右移操作的方法
    //return (i - 1) >> 1;
  }

  //获取左侧子节点,i为当前节点的索引
  getLeftIndex(i) {
    return i * 2 + 1;
  }

  //获取右侧子节点,i为当前节点的索引
  getRightIndex(i) {
    return i * 2 + 2;
  }
}

(6)进行上移操作 shiftUp()

上面我们实现了获取父节点等获取各种索引的操作,现在,我们来实现上移操作。

对于上移操作来说,实现思路如下:

  • 先判断当前节点的位置是否在堆的顶点处,如果是,则不进行上移操作;如果否,则继续进行比较;
  • 获取父节点的位置索引,获取索引的目的是为了获取该索引的具体值;
  • 将当前节点的值与父节点的值进行对比,如果父节点的值大于当前节点的值,则进行上移操作;
  • 递归进行上移操作,直到到达堆顶为止。

下面给出具体的代码实现方法:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取父节点的位置
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    //也可以用以下这种右移操作的方法
    //return (i - 1) >> 1;
  }

  //shiftUp进行上移操作
  shiftUp(index) {
    //如果在堆的顶点处,则不进行上移操作,直接返回结果
    if (index === 0) {
      return;
    }
    //获取父节点(即获取当前节点的父节点的值,且每个节点的父节点只有一个)
    const parentIndex = this.getParentIndex(index);
    //判断如果堆的父节点如果大于子节点,则进行位置交换
    if (this.heap[parentIndex] > this.heap[index]) {
      this.swap(parentIndex, index);
      //交换完成之后,继续递归进行上移操作
      this.shinftUp(parentIndex);
    }
  }
}

(7)进行下移操作 shiftDown()

对于下移操作来说,实现思路如下:

  • 先获取左右侧节点;
  • 将左侧子节点与当前节点进行比较,如果左侧子节点比当前节点小,则进行位置交换,之后将交换完的节点继续进行比较;
  • 左侧节点比较完之后,接下来比较右侧节点;
  • 将右侧子节点与当前节点进行比较,如果右侧子节点比当前节点小,则进行位置交换,之后将交换完的节点继续进行比较;
  • 如此循环操作,直到最后一个节点为止。

下面给出具体的代码实现方法:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取左侧子节点,i为当前节点的索引
  getLeftIndex(i) {
    return i * 2 + 1;
  }

  //获取右侧子节点,i为当前节点的索引
  getRightIndex(i) {
    return i * 2 + 2;
  }

  // 进行下移操作
  shiftDown(index) {
    // 获取左右侧子节点
    const leftIndex = this.getLeftIndex(index);
    const rightIndex = this.getRightIndex(index);
    //  对左侧结点进行交换
    if (this.heap[leftIndex] < this.heap[index]) {
      this.swap(leftIndex, index);
      this.shiftDown(leftIndex);
    }
    //  对右侧结点进行交换
    if (this.heap[rightIndex] < this.heap[index]) {
      this.swap(rightIndex, index);
      this.shiftDown(rightIndex);
    }
  }
}

(8)插入节点的值 insert()

对于插入节点操作来说,实现思路如下:

  • 将值插入堆的底部,即数组的尾部。
  • 然后上移:将这个值和它的父节点进行交换,直到父节点小于等于这个插入的值。
  • 大小为 k 的堆中插入元素的时间复杂度为 O(logK)

下面给出具体的代码实现方法:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取父节点的位置
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    //也可以用以下这种右移操作的方法
    //return (i - 1) >> 1;
  }

  //shiftUp进行上移操作
  shiftUp(index) {
    //如果在堆的顶点处,则不进行上移操作,直接返回结果
    if (index === 0) {
      return;
    }
    //获取父节点(即获取当前节点的父节点的值,且每个节点的父节点只有一个)
    const parentIndex = this.getParentIndex(index);
    //判断如果堆的父节点如果大于子节点,则进行位置交换
    if (this.heap[parentIndex] > this.heap[index]) {
      this.swap(parentIndex, index);
      //交换完成之后,继续递归进行上移操作
      this.shinftUp(parentIndex);
    }
  }

  //插入结点值的操作,value为被插入的值
  insert(value) {
    //把新的值放到数组的最后一位
    this.heap.push(value);
    //将值进行上移操作
    this.shiftUp(this.heap.length - 1);
  }
}

(9)删除堆顶操作 pop()

对于删除堆顶操作来说,实现思路如下:

  • 用数组尾部元素替换堆顶(因为直接删除堆顶会破坏堆结构)。
  • 然后下移:将新堆顶和它的子节点进行交换,直到子节点大于等于这个新堆顶。
  • 大小为 k 的堆中删除堆顶的时间复杂度为 O(logK)

下面给出具体的代码实现方法:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }
  //交换节点i1和i2之间的位置
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }

  //获取左侧子节点,i为当前节点的索引
  getLeftIndex(i) {
    return i * 2 + 1;
  }

  //获取右侧子节点,i为当前节点的索引
  getRightIndex(i) {
    return i * 2 + 2;
  }

  // 进行下移操作
  shiftDown(index) {
    // 获取左右侧子节点
    const leftIndex = this.getLeftIndex(index);
    const rightIndex = this.getRightIndex(index);
    //  对左侧结点进行交换
    if (this.heap[leftIndex] < this.heap[index]) {
      this.swap(leftIndex, index);
      this.shiftDown(leftIndex);
    }
    //  对右侧结点进行交换
    if (this.heap[rightIndex] < this.heap[index]) {
      this.swap(rightIndex, index);
      this.shiftDown(rightIndex);
    }
  }

  //删除堆顶操作
  pop() {
    //将尾部的值赋值给堆顶
    this.heap[0] = this.heap.pop();
    //进行下移操作
    this.shiftDown(0);
  }
}

(10)获取堆顶的值 peek()

对于获取堆顶的值操作来说,实现思路较为简单,也就是返回数组的头部即可获取堆顶的值。具体实现代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }

  //获取堆顶的值
  peek() {
    return this.heap[0];
  }
}

(11)获取堆的大小 size()

对于获取堆的大小操作来说,实现思路其实就是获取整个堆的长度,也就是返回数组的长度。具体实现代码如下:

js
class MinHeap {
  //创建一个构造器,存放一个堆
  constructor() {
    this.heap = [];
  }

  //获取堆的大小
  size() {
    return this.heap.length;
  }
}

(12)结果展示

完成上面的操作以后,接下来,我们来对写一组测试用例,演示具体的结果。具体代码如下:

js
const h = new MinHeap();
h.insert(3);
h.insert(2);
h.insert(1);
h.pop();
console.log(h); // MinHeap { heap: [ 2, 4, 3 ] }
h.peek();
h.size();
console.log(h.peek()); // 2
console.log(h.size()); // 3

🐤 五、leetcode 经典题目剖析

接下来我们引用几道经典的 leetcode 算法,来巩固树和二叉树的知识。

1. leetcode215 数组中的第 K 个最大元素(中等)

(1)题意

附上题目链接:leetcode215 数组中的第 K 个最大元素

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

输入输出示例:

  • 输入: [3,2,1,5,6,4]k = 2
  • 输出: 5

(2)解题思路

  • 看到“第 K 个最大元素”。
  • 考虑选择使用最小堆。

(3)解题步骤

  • 构建一个最小堆,并以此把数组的值插入堆中。
  • 当堆的容量超过 K,就删除堆顶。
  • 插入结束后,堆顶就是第 K 个最大元素。

(4)代码实现

依据上面我们构建的最小堆,接下来,我们用这个最小堆,来完成这道题。具体代码如下:

js
class MinHeap {
  constructor() {
    this.heap = [];
  }
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    // return (i - 1) >> 1;
  }
  getLeftIndex(i) {
    return i * 2 + 1;
  }
  getRightIndex(i) {
    return i * 2 + 2;
  }
  shiftUp(index) {
    if (index === 0) {
      return;
    }
    const parentIndex = this.getParentIndex(index);
    if (this.heap[parentIndex] > this.heap[index]) {
      this.swap(parentIndex, index);
      this.shiftUp(parentIndex);
    }
  }
  shiftDown(index) {
    const leftIndex = this.getLeftIndex(index);
    const rightIndex = this.getRightIndex(index);
    if (this.heap[leftIndex] < this.heap[index]) {
      this.swap(leftIndex, index);
      this.shiftDown(leftIndex);
    }
    if (this.heap[rightIndex] < this.heap[index]) {
      this.swap(rightIndex, index);
      this.shiftDown(rightIndex);
    }
  }
  insert(value) {
    this.heap.push(value);
    this.shiftUp(this.heap.length - 1);
  }
  pop() {
    this.heap[0] = this.heap.pop();
    this.shiftDown(0);
  }
  peek() {
    return this.heap[0];
  }
  size() {
    return this.heap.length;
  }
}

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
let findKthLargest = function (nums, k) {
  const h = new MinHeap();
  nums.forEach((n) => {
    h.insert(n);
    if (h.size() > k) {
      h.pop();
    }
  });
  return h.peek();
};

console.log(findKthLargest([3, 2, 1, 5, 6, 4], 2)); // 5

2. leetcode347 前 K 个高频元素(中等)

(1)题意

附上题目链接:leetcode347 前 K 个高频元素

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

输入输出示例:

  • 输入: nums = [1,1,1,2,2,3], k = 2
  • 输出: [1,2]

(2)解题思路

  • 字典解法:将字典转换为数组,且堆数组进行排序;
  • 堆解法:构建一个最小堆,利用字典的键值关系,来记录元素出现的频率。

(3)代码实现

这道题我们用两种做法来实现,一种是字典解法,另外一种是堆解法具体如下:

1)字典解法:

js
/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number[]}
 */
// 字典解法
let topKFrequent1 = function (nums, k) {
  //定义一个数组
  const map = new Map();
  //先将数组中的元素存放到字典中
  nums.forEach((n) => {
    map.set(n, map.has(n) ? map.get(n) + 1 : 1);
  });
  // 将字典转换为数组,且对数组进行排序
  // 对数组中的第二项进行降序(从大到小)排序,从大到小
  const list = Array.from(map).sort((a, b) => b[1] - a[1]);
  //使用map()方法,创建一个新数组,来存放前k个元素
  return list.slice(0, k).map((n) => n[0]);
};

console.log(topKFrequent1([1, 1, 1, 2, 2, 3], 2)); // [1, 2]

2)堆解法:

js
/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number[]}
 */
// 堆解法
class MinHeap {
  constructor() {
    this.heap = [];
  }
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    // return (i - 1) >> 1;
  }
  getLeftIndex(i) {
    return i * 2 + 1;
  }
  getRightIndex(i) {
    return i * 2 + 2;
  }
  shiftUp(index) {
    if (index === 0) {
      return;
    }
    const parentIndex = this.getParentIndex(index);
    if (
      this.heap[parentIndex] &&
      this.heap[parentIndex].value > this.heap[index].value
    ) {
      this.swap(parentIndex, index);
      this.shiftUp(parentIndex);
    }
  }
  shiftDown(index) {
    const leftIndex = this.getLeftIndex(index);
    const rightIndex = this.getRightIndex(index);
    if (
      this.heap[leftIndex] &&
      this.heap[leftIndex].value < this.heap[index].value
    ) {
      this.swap(leftIndex, index);
      this.shiftDown(leftIndex);
    }
    if (
      this.heap[rightIndex] &&
      this.heap[rightIndex].value < this.heap[index].value
    ) {
      this.swap(rightIndex, index);
      this.shiftDown(rightIndex);
    }
  }
  insert(value) {
    this.heap.push(value);
    this.shiftUp(this.heap.length - 1);
  }
  pop() {
    this.heap[0] = this.heap.pop();
    this.shiftDown(0);
  }
  peek() {
    return this.heap[0];
  }
  size() {
    return this.heap.length;
  }
}

let topKFrequent2 = function (nums, k) {
  //初始化一个字典
  const map = new Map();
  //对数组挨个进行遍历,并记录出现次数
  nums.forEach((n) => {
    map.set(n, map.has(n) ? map.get(n) + 1 : 1);
  });
  //实例化一个最小堆
  const h = new MinHeap();
  //对字典中的所有键值对进行遍历
  map.forEach((value, key) => {
    //每遍历一个,堆中就插入一个
    h.insert({ value, key });
    //判断当前堆的大小是否大于k值
    if (h.size() > k) {
      h.pop();
    }
  });
  //返回值,对字典进行遍历,得到遍历后的键即为结果;
  //并通过map()方法创建一个新数组,才存放具体的值。
  return h.heap.map((a) => a.key);
};

console.log(topKFrequent2([1, 1, 1, 2, 2, 3], 2)); // [2, 1]

3. leetcode23 合并 K 个排序链表(困难)

(1)题意

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

输入输出示例:

  • 输入: lists = [[1,4,5],[1,3,4],[2,6]]

  • 输出: [1,1,2,3,4,4,5,6]

  • 解释

    js
    链表数组如下:
    [
      1->4->5,
      1->3->4,
      2->6
    ]
    将它们合并到一个有序链表中得到。
    1->1->2->3->4->4->5->6

(2)解题思路

  • 新链表的下一个节点一定是 k 个链表头中的最小节点。
  • 考虑选择使用最小堆。

(3)解题步骤

  • 构建一个最小堆,并以此把链表头插入堆中。
  • 弹出堆顶接到输出链表,并将堆顶所在链表的新链表头插入堆中。
  • 等堆元素全部弹出,合并工作就完成了。

(4)代码实现

js
class MinHeap {
  constructor() {
    this.heap = [];
  }
  swap(i1, i2) {
    const temp = this.heap[i1];
    this.heap[i1] = this.heap[i2];
    this.heap[i2] = temp;
  }
  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
    // return (i - 1) >> 1;
  }
  getLeftIndex(i) {
    return i * 2 + 1;
  }
  getRightIndex(i) {
    return i * 2 + 2;
  }
  shiftUp(index) {
    if (index === 0) {
      return;
    }
    const parentIndex = this.getParentIndex(index);
    if (
      this.heap[parentIndex] &&
      this.heap[parentIndex].val > this.heap[index].val
    ) {
      this.swap(parentIndex, index);
      this.shiftUp(parentIndex);
    }
  }
  shiftDown(index) {
    const leftIndex = this.getLeftIndex(index);
    const rightIndex = this.getRightIndex(index);
    if (
      this.heap[leftIndex] &&
      this.heap[leftIndex].val < this.heap[index].val
    ) {
      this.swap(leftIndex, index);
      this.shiftDown(leftIndex);
    }
    if (
      this.heap[rightIndex] &&
      this.heap[rightIndex].val < this.heap[index].val
    ) {
      this.swap(rightIndex, index);
      this.shiftDown(rightIndex);
    }
  }
  insert(val) {
    this.heap.push(val);
    this.shiftUp(this.heap.length - 1);
  }
  pop() {
    // 如果堆只有一个元素,直接返回结果
    if (this.size() === 1) {
      return this.heap.shift();
    }
    const top = this.heap[0];
    this.heap[0] = this.heap.pop();
    this.shiftDown(0);
    return top;
  }
  peek() {
    return this.heap[0];
  }
  size() {
    return this.heap.length;
  }
}
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode[]} lists
 * @return {ListNode}
 */
var mergeKLists = function (lists) {
  //实例化一个空链表
  const res = new ListNode(0);
  //定义一个p指针,指向空链表
  let p = res;
  //实例化一个最小堆
  const h = new MinHeap();
  //将题目给的链表,挨个进行遍历
  lists.forEach((l) => {
    //遍历后的链表如果不为空,则插入最小堆当中
    if (l) {
      h.insert(l);
    }
  });
  //判断堆中是否有内容
  while (h.size()) {
    //删除并返回堆顶
    const n = h.pop();
    //让p指针的next节点指向堆顶元素
    p.next = n;
    //p.next的值赋给p指针
    p = p.next;
    //如果堆顶元素有下一个节点,则将其插入堆中
    if (n.next) {
      h.insert(n.next);
    }
  }
  return res.next;
};

如有转载或 CV 的请标注本站原文地址